Many thin structural components such as beams, plates and shells experience a through – thickness temperature variation. This temperature
variation can produce both an in-plane expansion and an out-of-plane (bending) curvature. For use in engineering structures, we often wish
to minimize the thermal deformation of a component or to match it to the thermal deformation of another component. This is accomplished
by using a composite whose fibers have a negative axial thermal expansion coefficient. By varying the fiber volume fraction within a
symmetric laminated beam to create a functionally graded material (FGM), certain thermal deformations can be controlled or tailored.
Specifically, a beam can be designed which does not curve under a steady – state through – thickness temperature variation. Continuous
gradation of the fiber volume fraction in the FGM layer is modeled in the form of sinusoid function of the coordinate axis in thickness
direction of the beam. The beam results are independent of the actual temperature values, within the limitations of steady – state heat
transfer and constant material properties. The influence of volume fiber fraction distributions are studied to match or eliminate an in –plane
expansion coefficient, or to match a desired axial stiffness. Combining two fiber types to create a hybrid FGM can offer desirable increase
in axial and bending stiffness while still retaining the useful thermal deformation behavior.
-
Votre commentaire
Votre commentaire s'affichera sur cette page après validation par l'administrateur.
Ceci n'est en aucun cas un formulaire à l'adresse du sujet évoqué,
mais juste un espace d'opinion et d'échange d'idées dans le respect.
Posté Le : 03/02/2024
Posté par : einstein
Ecrit par : - Zidi Mohamed - Belhadj Abdesselem Hichem - Ziane Noureddine - Bakhti Karima - Merdaci Slimane - Tounsi Abdelouahed
Source : Revue Nature et Technologie Volume 5, Numéro 1, Pages 17-22 2013-01-30